Современные источники рентгеновского излучения и что нового они привнесли в науку

Грызлова Елена Владимировна

Кандидат физико-математических наук Старший научный сотрудник НИИ ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

> Университетские субботы 18 апреля 2015 года, МГУ, Москва

Лазер

Измерение расстояния до луны

Уголковый отражатель, установленный на луне Appollo11

В 1962 году одновременно МТІ и Крымской астрономической обсерватории измерили расстояние до луны, используя лазер

Рентгеновские лазеры

Сравнение источников излучения

Генерация излучения

В.К. Рентген Н. Тесла

Д. Д. Иваненко И. Я. Померанчук J. S. Schwinger 1944-1946 Разработали теорию синуротронного

1985-86 описали существование излуче тормозного излучения

х ускорі

Н.А. Винокуров А.Н. Скринский 1977 – Создали модификацию клистрона – лазер на свободных электронах

Генерация излучения

The undulator section in the FLASH tunnel

Формирование сгустков электронов

European XFEL

Размеры микрообъектов

Дифракция рентгеновских лучей

Восстановление трехмерной структуры молекулы

Модельный эксперимент на FLASH:

from the next pulse: no object

Отображение и голография наноструктур с временным разрешением до10 фс.

Фемто - 10⁻¹⁵ Пико – 10⁻¹² Нано – 10⁻⁹

Гипотеза о дрожании белка 'protein quake'

Многофотонное возбуждение центра фотосинтеза Blastochloris viridis позволило наблюдать изменение формы, возникающие на временах порядка пикосекунды (10⁻¹²) и предшествующие распространению тепла через белок

Окно прозрачности воды

Эксперимент выполнен на LCLS 40-fs X-ray, 2.6 × 10¹² фотонов на импульс, сфокусированы на 10-µm².

Наблюдение фотосинтеза

$\gamma + \gamma + \gamma + \gamma + \gamma + CO_2$ $H_2O \rightarrow O_2$ +глюкоза

Карта электронной плотност после поглощения двух фот Наблюдение биохимич

ксидоредуктаза) до и

0:0→3:2

ального времени

C. Kupitz et a; Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser, Nature **513**, 261 (2014).

Шкала времен для быстрых процессов

X-Ray Sources, L. Rivkin, EPFL & PSI, Frascati, November 2008

Наблюдение эволюции электронной плотности

Облучение атома криптона электромагнитным импульсом

Плотность 4р оболочки как функция времени

E. Goulielmakis et al Real-time observation of valence electron motion, *Nature*, **465**, 769 (2010).

Сложение (вычитание) частот

Сравнение теории с экспериментом позволило утверждать, что оптический лазер динамически изменил ковалентные связи в алмазе.

Космическая рентгенография

Крабовидная туманнос в рентгеновском Диапазоне (сверхновая 1054 г.) В центре – пульсар с периодом 0.033 сек.

периодом 0.033 сек. когда Тит туманнос астроном протяжен

Тень от Титана (спутника Сатурна) снятая в рентгеновском диапазоне в январе 2003 года, когда Титан проходил перед Крабовидной туманностью. Используя эти данные астрономы впервые смогли определить протяженность атмосферы Титана.

http://chandra.harvard.edu

Военное применение

В 2010 году в США стартовала программа по развитию системы обороны морских сил, основанная на лазерах на свободных электронах, базирующихся на авианосцах

«The Free Electron Laser (FEL) provides naval platforms with a highly effective and affordable defense capability against surface and air threats, future antiship cruise missiles and swarms of small boats. Utilization of FEL also allows an unlimited magazine with speed-of-light delivery».

http://www.onr.navy.mil/Media-Center/Fact-Sheets/Free-Electron-Laser.aspx

Как к нам попасть?

Физический факультет МГУ

Лаборатория Д-ра А.Н. Грум-Гржимайло

Кафедра общей ядерной физики

Отдел электромагнитных процессов и взаимодействия атомных ядер Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

gryzlova@gmail.com

C. Camara et al. Nature, 455 1089 (2008)

Apparatus for studying high-energy emission from peeling tape.

b, Photograph of the apparatus (under a pressure of 10^{-3} torr) illuminated entirely by scintillations. **c**, Diagram of the apparatus used to measure peeling force; SS, spring steel (Methods).

Figure 3 | Spectrum of X-ray energies from peeling one roll of tape. The peel speed was between 3 and 3.6 cm s^{-1} at 10^{-3} torr of air. Data were acquired with the Amptek CdTe detector. Inset: energies for nanosecond pulses out to 10 GeV for the same run taken with the Amptek 3-Stack detector (Methods).

Польза исследований на FEL (научный выход):

Короткие длины волн позволят выяснить, каким образом скомпонованы, в атомном масштабе, сложные биомолекулы или материалы; достичь лучшего понимания структуры биологических клеток, создавать материалы с заданными свойствами.

Короткое время вспышек позволят создавать фильмы ультрабыстрых процессов, таких как формирование и разрыв химических связей, т.е. лучше понять химические процессы, например, с целью развить более эффективные производственные процессы. Эти исследования создадут также базу для развития новой медицины.

Интенсивность вспышек можно будет использовать для создания и изучения материи в экстремальных условиях, таких, как например внутри звезд и планет. Кроме того, исследования поведения отдельных атомов под действием интенсивных световых вспышек приведут к новым методам в рентгеновской физике. http://www.wired.com/2011/02/une\xpectedly-navys-superlaser-blasts-away-a-record/

http://www.youtube.com/watch?v=fWdGkb7r1iA

Процессы с малым сечением Дифракция на молекуле(Уве)

Квантовая природа атома

