ЛЕТНЯЯ ШКОЛА ДЛЯ УЧИТЕЛЕЙ МАТЕМАТИКИ.
(Общая продолжительность школы: 24 академических часа)
14 июня 2019 года, пятница
09:00 – 10:00. Регистрация участников.
МГУ имени М.В. Ломоносова, факультет вычислительной математики и кибернетики, второй учебный корпус, северное крыло, аудитория П-14.
10:00 – 10:30. Приветствие участников и вступительное слово.
Соколов Игорь Анатольевич, и.о. декана факультета вычислительной математики и кибернетики;
Миньяр-Белоручев Константин Валерьевич, проректор — начальник Управления учебно-методической деятельности и дополнительного образования;
Федотов Михаил Валентинович, заместитель декана по учебной работе факультета вычислительной математики и кибернетики.
10:30 – 11:45. Типичные ошибки при решении логарифмических неравенств.
Денисов Дмитрий Витальевич, кандидат физико-математических наук, доцент кафедры исследования операций факультета вычислительной математики и кибернетики.
11:45 – 12:30. Построение сечений в задачах по стереометрии.
Денисов Дмитрий Витальевич, кандидат физико-математических наук, доцент кафедры исследования операций факультета вычислительной математики и кибернетики.
12:30 – 13:00. Система задач с параметрами в учебно-методическом комплексе А.Г. Мерзляка.
Корпорация «Российский учебник»: «Дрофа» – «Вентана-Граф» – «Астрель».
Объяснения в линии учебно-методического комплекта отличаются простотой, ясностью и логичностью, а большое разнообразие задач различного уровня сложности позволяет реализовать дифференциацию обучения и индивидуальный подход — таким образом у школьников формируется активный познавательный интерес к математике. Учебники сочетают традиционные и современные методики, обеспечивая качественную математическую подготовку школьников. Кроме тематического и поурочного планирования, в методические пособия вошли математические диктанты и примерные варианты контрольных работ. Рабочие тетради содержат развивающие задания и снабжены поясняющими цветными иллюстрациями.
13:00 – 14:30. Задачи по теории вероятностей Единого государственного экзамена и конкурсных испытаний по математике.
Захарова Татьяна Валерьевна, кандидат физико-математических наук, доцент кафедры математической статистики факультета вычислительной математики и кибернетики.
В ходе двух лекций предлагается разбор стандартных, типовых задач теории вероятностей для успешной сдачи государственного экзамена. Для успешного усвоения материала слушатели познакомятся с элементарными основами теории вероятностей. Для них будут введены основные понятия, модели и методы вычисления теории вероятностей. Задачи будут разделены по типам: классическая вероятность, геометрическая вероятность, расчет вероятностей сложных событий, условная вероятность и независимость, формула полной вероятности, формула Байеса, схема Бернулли.
14:30 – 15:30. Перерыв.
15:30 – 17:00. Вокруг квадратного трехчлена.
Бегунц Александр Владимирович, кандидат физико-математических наук, доцент кафедры математического анализа механико-математического факультета МГУ имени М.В. Ломоносова.
Предполагается обсудить как хорошо известные, так и нередко упускаемые из виду свойства квадратного трёхчлена, полезные при решении задач олимпиад и экзаменов. Теоретические факты будут сопровождаться доказательствами и примерами применения.
17:00 – 18:30. Что такое параметры и как с ними работать?
Нагорный Александр Степанович, кандидат физико-математических наук, старший преподаватель кафедры математической кибернетики факультета вычислительной математики и кибернетики.
18:30 – 20:00. Обмен опытом и выступления слушателей летней школы, обсуждение докладов, дискуссии.
15 июня 2019 года, суббота
09:00 – 09:30. Регистрация участников.
МГУ имени М.В. Ломоносова, факультет вычислительной математики и кибернетики, второй учебный корпус, северное крыло, аудитория П-14.
09:30 – 11:00. Использование координатной плоскости и тригонометрических замен в конкурсных задачах по математике.
Попов Юрий Александрович, старший преподаватель учебного центра факультета вычислительной математики и кибернетики.
11:00 – 12:15. Изменение учителем содержания школьного урока математики в ответ на современные образовательные вызовы.
Самсонов Павел Иванович, директор ГБОУ «Школа №86 имени М.Е. Катукова», учитель математики.
Классический и устоявшийся школьный курс математики позволит ученику получить качественное математическое образование, но будет ли он успешен в современном образовании? Как учителю прогнозировать образовательные вызовы и изменять содержание своих уроков?
12:15 – 13:45. Лингвистика: дисциплина на стыке гуманитарного и математического знания.
Антонюк Вероника Валерьевна, лингвист, сотрудник филологического факультета МГУ имени М.В. Ломоносова, преподаватель школы юного филолога МГУ, педагог дополнительного образования ГБОУ «Школа №1329».
Речь пойдёт о лингвистике как о всё более популярном направлении обучения, требующем в том числе хорошей математической подготовки. Вниманию слушателей будут предложены самодостаточные лингвистические задачи, для решения которых требуется не знание конкретных языков, а стройное логическое мышление.
13:45 – 14:30. Современные тренды в математическом образовании.
Гладких Артемий Владимирович, руководитель кафедры математики и информатики, учитель математики АНОО «Областная гимназия имени Е.М. Примакова».
На лекции будут показаны основные тренды в современном математическом образовании. Слушатели смогут узнать об их применимости на практике и познакомиться с методиками преподавания в гимназии имени Е.М. Примакова.
14:30 – 15:30. Перерыв.
15:30 – 17:00. Что такое параметры и как с ними работать?
Нагорный Александр Степанович, кандидат физико-математических наук, старший преподаватель кафедры математической кибернетики факультета вычислительной математики и кибернетики.
17:00 – 18:30. Задачи по теории вероятностей Единого государственного экзамена и конкурсных испытаний по математике.
Захарова Татьяна Валерьевна, кандидат физико-математических наук, доцент кафедры математической статистики факультета вычислительной математики и кибернетики.
В ходе двух лекций предлагается разбор стандартных, типовых задач теории вероятностей для успешной сдачи государственного экзамена. Для успешного усвоения материала слушатели познакомятся с элементарными основами теории вероятностей. Для них будут введены основные понятия, модели и методы вычисления теории вероятностей. Задачи будут разделены по типам: классическая вероятность, геометрическая вероятность, расчет вероятностей сложных событий, условная вероятность и независимость, формула полной вероятности, формула Байеса, схема Бернулли.
18:30 – 20:00. Обмен опытом и выступления слушателей летней школы, обсуждение докладов, дискуссии.
Выдача сертификатов установленного образца «МГУ – школе» об участии в Летней школе для учителей математики.